537 research outputs found

    HerMES: Lyman Break Galaxies Individually Detected at 0.7 ≤ z ≤ 2.0 in GOODS-N with Herschel/SPIRE

    Get PDF
    As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman break galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high-mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A_(FUV) versus log L_(FUV) = 0 diagram limited by A_(FUV) = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom right to the top left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L_(FUV). The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age

    Star Formation and Dust Extinction Properties of Local Galaxies as seen from AKARI and GALEX

    Get PDF
    An accurate estimation of the star formation-related properties of galaxies is crucial for understanding the evolution of galaxies. In galaxies, ultraviolet (UV) light emitted by recently formed massive stars is attenuated by dust, which is also produced by star formation (SF) activity, and is reemitted at mid- and far- infrared (IR) wavelengths. In this study, we investigate the star formation rate (SFR) and dust extinction using UV and IR data. We selected local galaxies which are detected at AKARI FIS 90 um and matched the IRAS IIFSCz 60 um select catalog. We measured FUV and NUV flux densities from GALEX images. We examined the SF and extinction of Local galaxies using four bands of AKARI. Then, we calculated FUV and total IR luminosities, and obtained the SF luminosity, L_{SF}, the total luminosity related to star formation activity, and the SFR. We find that in most galaxies, L_{SF} is dominated by L_{dust}. We also find that galaxies with higher SF activity have a higher fraction of their SF hidden by dust. In fact, the SF of galaxies with SFRs >20 M_{sun}/yr is almost completely hidden by dust. Our results boast a significantly higher precision with respect to previously published works, due to the use of much larger object samples from the AKARI and GALEX all sky surveys.Comment: 9 pages, 12 figures, accepted for publication in Earth, Planets, and Space, A few minor corrections, and a reference adde

    The Wide-field High-resolution Infrared TElescope (WHITE)

    Full text link
    The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated in the first years of its life to carrying out a few (well focused in terms of science objectives and time) legacy surveys. WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq. deg. in the wavelength range 1 - 5 um, which means that we will very efficiently use all the available observational time during night time and day time. Moreover, the deepest observations will be performed by summing up shorter individual frames. We will have a temporal information that can be used to study variable objects. The three key science objectives of WHITE are : 1) A complete survey of the Magellanic Clouds to make a complete census of young stellar objects in the clouds and in the bridge and to study their star formation history and the link with the Milky Way. The interaction of the two clouds with our Galaxy might the closest example of a minor merging event that could be the main driver of galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the equation of state from these obscured objects, study the formation of dust in galaxies and build the first high resolution sample of high redshift galaxies observed in their optical frame 3) A very wide weak lensing survey over that would allow to estimate the equation of state in a way that would favourably compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science Cases at Dome C" Potsdam 17-21 September, 200

    SED-inferred properties and morphology of Lyman-break galaxies at z1z\sim 1 in the CDF-S

    Full text link
    After carefully cross-identifying a previously discovered GALEX-selected Lyman Break Galaxy (LBG) candidates one-to-one with their optical counterparts in the field of the CDF-S, we re-estimate their photometric redshifts using multi-wavelength data from UV, optical to NIR. We refine a new updated sample of 383 LBGs at 0.7\la z \la 1.4. Most LBGs are classified as starburst and irregular types. Ages spread from several Myr to 1.5Gyr. Their dust-corrected star formation rates (SFRs) and stellar masses (MM_*) are from 4\my to 220\my and from 2.3\times 10^8 \msun to 4 \times 10^{11} \msun. The rest-frame FUV luminosity function of LBGs are presented. LBGs of irregular types mainly distribute along the "main sequence" of star forming galaxies while most LBGs of starburst types locate in the starburst region. A "downsizing" effect is clearly found and LBGs distribute in the "blue" cloud. HST images in F606W (VV band) and F850LP (zz band) are taken from the GEMS and GOODS-S surveys. SExtractor and GALFIT are applied to get their morphological parameters. A morphological sample of 142 LBGs with reliable results of \sersic and sizes in both bands is defined. We find that LBGs at z1z\sim 1 are dominated by disk-like galaxies. Correlations between photometric and morphological properties of LBGs are investigated. Strong correlations between their half-light radii and MM_*, i.e., size-stellar mass relations, are found in both bands. Physical connections between correlations and the "downsizing" effect are discussed.Comment: 26 pages, 30 figures, 6 tables, accepted by MNRA

    An investigation of star formation and dust attenuation in major mergers using ultraviolet and infrared data

    Full text link
    Merger processes play an important role in galaxy formation and evolution. To study the influence of merger processes on the evolution of dust properties and cosmic star formation rate, we investigate a local sample of major merger galaxies and a control sample of isolated galaxies using GALEX ultraviolet (UV) and Spitzer infrared (IR) images. Through a statistical study, we find that dust attenuation in merger galaxies is enhanced with respect to isolated galaxies. We find this enhancement is contributed mainly by spiral galaxies in spiral-spiral (S-S) pairs, and increases with the increasing stellar mass of a galaxy. Combining the IR and UV parts of star formation rates (SFRs), we then calculated the total SFRs and specific star formation rates (SSFRs). We find the SSFRs to be enhanced in merger galaxies. This enhancement depends on galaxy stellar mass and the companion's morphology, but depends little on whether the galaxy is a primary or secondary component or on the separation between two components. These results are consistent with a previous study based only on IR images. In addition, we investigate the nuclear contributions to SFRs. SFRs in paired galaxies are more concentrated in the central part of the galaxies than in isolate galaxies. Our studies of dust attenuation show that the nuclear parts of pairs most resemble ULIRGs. Including UV data in the present work not only provides reliable information on dust attenuation, but also refines analyses of SFRs.Comment: 21 pages, 21 figure

    Ultraviolet to infrared emission of z>1 galaxies: Can we derive reliable star formation rates and stellar masses?

    Full text link
    We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrations or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.Comment: 14 pages, 14 figures, accepted for publication A&
    corecore